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Abstract. A simplicial branch and bound-outer approximation technique for solving nonseparable, 
nonlinearly constrained concave minimization problems is proposed which uses a new simplicial cover 
rather than classical simplicial partitions. Some geometric properties and convergence results are 
demonstrated. A report on numerical aspects and experiments is given which shows that the most 
promising variant of the cover technique can be expected to be more efficient than comparable 
previous simplicial procedures. 
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1. Introduction and Brief Survey of Existing Methods 

The purpose of this article is to present a new algorithm for solving the concave 
minimization problem 

P> minimize f(x), subject to x E D , 

where f is a concave, not necessarily separable real-valued function on a suitable 
open convex set A CR” containing D, and D := {xER”: g,(x)~O (i= 1, 
2 > . . . , I)}. We will assume, for each i E {1,2, . . . , Z} that gi is a real-valued 
convex function on A, that D is a nonempty, compact set, and that there exists a 
point PER” such that gi(p)<O (i=1,2,..., I) (Slater condition). By intro- 
ducing the convex function g(x) : = max{ g,(x) : i = 1, . . . , I}, we rewrite problem 
(P) in the form 

(P> minimize f(x), subject to g(x) < 0 . 

Problem (P) may have many locally-optimal solutions which are not globally 
optimal. While it is well known that a globally optimal solution for problem (P) 
exists which is an extreme point of D, D may have an infinite number of extreme 
points. Let m := min f(D) denote the optimal objective function value for 
problem (P). 

Numerous applications from many different fields lead to concave minimization 
problems. In addition, several other difficult problems of interest in optimization 
can be transformed into equivalent concave minimization problems; examples 
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include bilinear programming problems, linear and concave complementarity 
problems, certain max-min problems and integer programming problems. More- 
over, most successful concave minimization techniques can be extended to the 
considerably more general d.c. programming problem, where now all of the 
functions involved in (P) can be represented as the difference of two convex 
functions. 

A comprehensive treatment of concave minimization, d.c. programming, and 
other global optimization problems and techniques is given in the recent mono- 
graph of Horst and Tuy (1990). Therefore, for the development of concave 
minimization until 1989, we refer the reader to this monograph and its numerous 
references. We restrict ourselves here to a brief outline of those methods which 
are directly relevant to our new approach and to numerical and methodological 
results which are not (fully) reported in Worst and Tuy (1990). Note that we are 
interested here in algorithms for solving (P) in the case of nonlinear g, (i.e., 
nonpolyhedral feasible sets D), and we do not assume separability of the 
functions involved. 

The first convergent algorithm for solving the nonlinearly constrained concave 
minimization problem (P) was the branch and bound procedure of Horst (1976): 
an initial n-simplex M,, 3 D is refined by a partitioning procedure which, by 
replacing one vertex of one of the longest edges of a simplex by the midpoint of 
this edge, successively subdivides certain most promising subsimplices of M,, into 
two smaller simplices of equal volume. This refining procedure is frequently called 
a bisection. On each simplex M generated by the procedure one computes the 
uniformly best convex underestimating function (PIM of f on M (the convex 
envelope off on M). By minimizing the convex envelopes ‘over M n D, for each 
M of a current partition of a certain subset of MO still of interest, one obtains 
lower bounds for the optimal value m of (P) which eventually converge to m 
(Horst, 1976 and 1980), see also Horst and Tuy (1990). 

The convex envelope (p2~ off on M is the uniquely defined affine function that 
coincides with f at the vertices of M immediately available when barycentric 
coordinates relative to M are used: Let M = conv {u’, . . . , u”} be given as convex 
hull of its n + 1 vertices u”, . . .un. Then every x E M is uniquely representable in 
the form 

x = 2 A$, 2 Ai = 1, Ai 20 (i = 0, . . , , n) and qM(x) = 2 Aif 
i=o i=O i=O 

In each branching step, however, two nonlinear convex programming problems of 
the type “minimize ADS over M fl D” have to be solved. Numerical investiga- 
tions reported in Thoai and de Vries (1988), Horst, Thoai, and Benson (1991) 
and Horst (1991) show that it is not worthwhile to solve these convex problems 
very accurately in each step. A few dual LP-steps of a classical (slow) cutting- 
plane approach such as the supporting hyperplane method of Veinott (1967) often 
provides more “overall” efficiency than an accurate solution by means of a faster 
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general purpose nonlinear programming algorithm such as SQP (sequential 
quadratic programming). But these numerical investigations also show that this 
simplicial approach is not very efficient for larger problem sizes whatever convex 
programming code is used. Apart from the computationally-expensive sub- 
problems, a second drawback concerns the use of the simplex partitions which 
responds to the extreme point optimality of problem (P) only by an obvious 
deletion of all simplices M > int D. Note, however, that modifications and 
specializations of this approach are of interest and (or) are numerically quite 
efficient for a number of specially-structured problems, for example, in biconvex 
optimization (Al-Khayyal and Falk, 1983), in separable concave minimization 
(Falk and Soland, 1969; Pardalos and Rosen, 1987; Horst and Tuy, 1990, and 
references therein), and in certain interactive fixed charge problems (Benson and 
Erenguc, 1988). 

A second well-known class of methods has been termed outer approximation: a 
decreasing sequence of polytopes P, > D is constructed and an optimal solution of 
(P) is successively approximated by a solution xk of the relaxed problem “mini- 
mize f(x) over Pk”. If xk E D, then xk is an optimal solution of (P). If x”@ D, then 
one sets Pk+l = P, n {x: zk+)soO), where 1, is a suitable real-valued affine 
function satisfying Zk(x) G OVx E D and Zk(xk) > 0. This well-known scheme, which 
has been used in many fields of optimization, can be applied to problem (P) in 
various ways (see, for example, Hoffman, 1981; Thieu, Tam, and Ban, 1983; 
Horst, Thoai, and Tuy, 1987 and 1989). A general convergence theory, which 
includes various “constraint dropping strategies”, generalization to nonlinear 
“cuts” Ik(x) and many details is given in Horst and Tuy (1990). In our case of 
concave minimization, the approximations xk are determined by enumeration of 
the vertices of P, , and the computationally-crucial part concerns in the determina- 
tion of all new vertices of the polytope Pk+l which is generated from the polytope 
P, (whose vertex set is known) by a cutting hyperplane {x: Zk(x) = O}. Various 
simple techniques are known for this enumeration problem (see Horst and Tuy, 
1990; Chen, Hansen, and Jaumard, 1991 and references therein). 

Outer approximation methods are often fast for small problems but not 
competitive with the best methods when the problem size increases (cf. Thoai and 
de Vries, 1988; Horst and Thoai, 1989). This behavior is due to the inevitable 
enumeration of the new vertices whose number is usually rapidly increasing with 
the dimension of D (e.g., Horst, Thoai, and de Vries, 1988). 

The cone splitting method of Tuy, Thieu, and Thai (1985) combines some ideas 
from branch and bound and outer approximation: Assuming O~int D, an n 
simplex S satisfying 0 E int S is constructed, and the collection of conical hulls 
{coneFi:i=l,..., n{ of the y1 + 1 facets F, of S defines a conical partition of 1w”. 
Most promising cones are successively refined by bisecting the corresponding 
simplices F, and forming the conical hulls of the corresponding subsimplices. For 
each cone C, at the intersection points of its rz generating edges with the boundary 
LID of D, and at certain additional boundary points of D the supporting hy- 
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perplanes of D are constructed. The intersection of the cone C and all of the 
closed halfspaces corresponding to these hyperplanes is a polytope whose minimal 
vertex value of f defines the lower bounds in the conical branch and bound 
scheme. This approach, however, faces numerical vertex enumeration problems 
similar to the outer approximation methods and can handle only relatively small 
problem sizes (Thoai and de Vries, 1988). 

Note that in simplicial and conical branch and bound methods one can apply 
various so-called radial subdivision rules rather than mere bisection (e.g., Horst 
and Tuy, 1990; Tuy, 1991). Often an acceleration results, but, in general, the 
handleable problem sizes cannot be increased significantly by modified radial 
subdivisions alone. 

A considerable step forward in the direction of more efficient concave minimi- 
zation algorithms has been achieved very recently with new methods that combine 
typical branch and bound elements like partitioning, deletion and bounding with 
suitably introduced outer approximation cuts in such a way that the computation- 
ally most expensive subroutines of the previous algorithms are avoided. In Horst, 
Thoai, and Benson (1991), a conical branch and bound-outer approximation 
technique is proposed which highly exploits the concavity off in the bounding and 
deletion procedure. Horst and Benson (1991) propose a simplicial branch and 
bound-outer approximation technique, and Benson (1990) treats the separable 
concave minimization problem in a similar way via rectangular partitions. One of 
the major advantages of these algorithms is that the only significant nonlinear 
computation required at each iteration can be accomplished by any of a number of 
simple univariate search procedures. The only other major computations required 
involve only either linear programming subproblems and (in Benson and Horst, 
1991) linear systems of (n + 1) unknowns which have a unique solution. Numeri- 
cal experiments reported in Horst, Thoai, and Benson (1991) indicate that clever 
implementations of the most promising of the above branch and bound-outer 
approximation ideas are considerably more efficient for larger problem sizes than 
the pure branch and bound and the pure outer approximation algorithms. 

The motivation of the present article departs from the branch and bound-outer 
approximation algorithm of Benson and Horst (1991) which, in its branch and 
bound part, uses standard simplicial partitioning and convex underestimating 
functions in a similar way as in the above described original simplicial branch and 
bound approach of Horst (1976). Though the optimal solution of (P) is an 
extreme point of the feasible set D, many simplices are generated which have 
large parts in the interior of D, far away from any extreme point. As a 
consequence, much computation has to be carried out at points which are 
certainly not very good approximations of a global minimizer. Therefore, in 
Section 2 we introduce a new simplicial covering technique which allows immedi- 
ate deletion of a large part of the interior of D, and provides considerably- 
improved initial bounds for the optimal value m. A related refining strategy and a 
number of new results on its geometry and convergence properties are presented, 
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which include sufficient conditions for the repeated application of this cover to be 
exhaustive. 

Section 3 introduces a slight generalization of the so-called y-extension, which 
until now has been successfully used only in conical algorithms (cf. Horst and 
Tuy, 1990; Horst, Thoai, and Benson, 1991 and references therein). This 
generalization will allow one to incorporate the y-extension concept in the 
simplicial cover procedure. The new algorithm is presented which generates 
sequences of upper and of lower bounds for the optimal value m of (P). It is 
proved that, when the algorithm is not finite, every accumulation point of both 
the sequence of lower and the sequence of upper bounds equals m. As a side 
effect, it results that in the Benson-Horst (1991) approach, where only conver- 
gence of the lower bounds is proved, we also can introduce upper bounds 
converging to m. 

Finally, Section 4 illustrates the new algorithm using the example of Benson- 
Horst (1991), and reports on implementation and numerical comparison with the 
Benson-Horst method. 

2. A Class of Simplicia1 Covers 

In this section a class of simplicial covers is introduced which, in contrast to the 
classical simplicial partition (cf. Horst and Tuy, 1990), allows overlap of interior 
part of the simplices involved. A number of relevant geometric and convergence 
properties is discussed, which includes sufficient conditions for the infinitely 
repeated application of the cover to be exhaustive. Some of the very involved 
proofs, however, have to be omitted here. These proof and additional results will 
be published in a separate article (Horst, Thoai, and de Vries, 1991). 

DEFINITION 2.1. Let M, Mi (i E I C  N) be n dimensional simplices (n- 
simplices) in Rn satisfying Mi f l  M # 0 (i E I ) .  The collection A : = {Mi : i E I )  is 
said to be a simplicial cover of M if 

M C U  Mi,  
i E I  

The following lemmas and theorems introduce a class of simplicial covers. Let 
conv A and aff A denote the convex hull and the affine hull, respectively, of a set 
A C R". 

LEMMA 2.1. Let M = conv{uO,. . , un) be an n-simplex in Rn with vertices 
0 u , . . . , u", and let x0 E int M. Then, for arbitrary pi > 1 (i = 0, . . . , n), the points 

0 s' = ui + y,(x - v') ( i  = 0, . . . , n) (1) 
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are afinely independent, i. e, M : = conv{sO, . . . , s") is an n-simplex. Moreover, we 
have x0 E int M .  

Proof. Without loss o f  generality assume x0 = 0. Then, by ( 1 )  a linear mapping 

T :  [ ~ n + l + ~ n + l  . S = T V  

is defined. The mapping T is regular since the matrix T is a diagonal matrix with 
diagonal elements 1 - pi < 0 ( i  = 0 ,  , . . . , n).  It follows that the images s' o f  the 
affinely independent points u' ( i  = 0 ,  . . . , n )  are affinely independent, and hence 
M is an n-simplex. The restriction o f  T on M is an isomorphism M 4  M (with 
respect to the Euclidean topology on M ,  resp. M )  which maps the interior point 
x0 = 0 onto the interior point 0 = T(0) o f  M .  

LEMMA 2.2. Let v' and s' ( i  = 0,  . . . , n )  be defined as in Lemma 2.1. Then, for 
all i E (0 ,  . . . , n ) ,  the hyperplane 

H, : = aff{sO, . . . , si-l, s"', . . . , s") (2) 

strictly separates v' from 

conv{xO, ui( j = 0,  . . . , n ;  j # i ) )  

whenever Hi n M # O and ui&' H,. 

A proof o f  Lemma 2.2 is given in Horst, Thoai, and de Vries (1991) 

THEOREM 2.1. Let M = { x  E Rn : gi(x) s 0 ( i  = 0,  . . . , n ) )  be the inequality- 
representation of an n-simplex M with facets Fi := M n { x :  gi(x) = 0 )  ( i  = 

0 ,  . . . , n )  and vertices vO, . . . , un. Let x0 E int M, and denote by v' the vertex of M 
opposite to Fi (i.e., v i F  Fi)(i = 0,  . . . , n) .  Moreover, let 

0 
S i  = ui + - ui )  , pi > 1 ( i  = 0, . . . , n )  

Finally, let 

with the suitable ujjine functions hi defined such that h i (xO) > 0 ( i  = 0, . . . , n).  
Then 

At : = { M i :  hi(ul)<O ( i E O , .  . . , n ) )  (3) 

where 

M i = { x ~ R n :  g j ( x ) s 0  ( j = O , .  . . , n ;  j f  i), hi (x ) sO ' )  

( i=O,  . . . ,  n )  

and 

Mn+,= M = { x € R n :  h j ( x ) 2 0  ( j = O , .  . . , n ) ) ,  

dejines a simplicia1 cover of M .  
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Proof. The set M,, 1 is the simplex &Z in Lemma 2.1. The sets Mi satisfying 
h,(u’) < 0, i.e., ZZi n M # 0, u’@ZZ,, are n-simplices because of Lemma 2.2. 

Let Z denote the set of indices i E (0, . . . , YZ} with Mj E A. In order to 
demonstrate M C n”“Mi, let K E M. Then we either have hi(x) b 0 (i = 
0 . . > n), and hence XE M,+l, 
h:(x) < 0, and hence x E Mi. 

or else there exists i E (0, . . . , n} such that 

Because of (4) we have ui E M, (i = 0, . . . , n), but from Lemma 2.2 we know 
that h,(u’) >O (j # i) (since h,(x”) > 0), and hence u’jZM, (i # j). Finally, 
x0 E M,+l, but h,(x”) > 0 (i = 0, . . . , n) implies x”jT?Mj (i = 0, . . . , n), and we 
have shown that 

MjF’U Mi (iE0. q 
iEI 
i#j 

REMARK. The condition h,(u’) < 0 in (3) is equivalent to ZZ, n M # 8, u’g H,, 
and it is easy to see that, when h,(u’) B 0 for i E I, the number of simplices in & is 
y1+ 2 - ) Z I. Note that the simplex M,+l in Theorem 2.1 coincides with the 
simplex ti in Lemma 2.1. In the algorithm for solving problem (P) which we 
present in the next section, the points sz will always be chosen in such a way that 
the simplex M,+l = Ir?Z can be deleted from further consideration, because we will 
know that the minimum value m of (P) cannot be attained here. 

In order to demonstrate the convergence of the algorithm which follows in 
Section 3, it is necessary to investigate the behaviour of decreasing sequences 
{ M4} of simplices, where M,,, is an element of the cover of M, which we 
introduced in Theorem 2.1, and which never has an element of the form &Z. 
Referring to the general convergence theory of branch and bound methods 
developed in Horst (1986), Horst and Tuy (1987), Tuy and Horst (1988) (see 
Horst and Tuy, 1990 for a detailed exposition), we are particularly interested in 
conditions which ensure that the M, converge to a singleton. Note that the above 
convergence theory uses partitions rather than covers, where a simplicial partition 
J!% = {M, : Mi is an n-Simplex, i E Z} of an n-simplex M is defined by the 
conditions M = U iErMi, int Mi fl int Mi = 0 (i # j). (Clearly, a partition is a 
cover). However, it is easy to see that this theory still holds when we replace 
partitions by covers. 

Let 6(M) denote the diameter of a simplex M, which is the length of a longest 
edge of M. 

DEFINITION 2.2. A successive simplicial cover is called exhaustive if 
S(M,)s 0 for all decreasing sequences {M,} of simplices, where Mq+l is an 
element of the cover of M,. 

The quite involved proof of the following result pertaining to exhaustiveness of 
our cover is given in Horst, Thoai, and de Vries (1991). 

LEMMA 2.3. Let M = conv{u’, . . , , u”} be the vertex representation of an n- 
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simplex in R”, and let ~0 be any number satisfying 0 < e0 < ll(n + 1). Let 
x0 E int M satisfy 

x0 = gh,u’, $*j=l, hi~eo (i=O ,..., n), 
i=O 

and consider 

si = ui + &(X0 - u’) 
with pi 3 1 + .eo (i = 0, . . . . n). 

Finally, let 

Hi=aff{s’: j=O,...,n;j#i}. 

Then, for each intersection point 

y’j E Hi n [ui d], yij = ui + hij(u’ - ui)(i, j E (0, . . . , n>, j # i) 

it follows that 

A, < 
1 - E. 

1 - E. + E; . 

THEOREM 2.2. Let 0 < e. < 1 /(n + 1). Then the successive cover introduced in 
Theorem 2.1, where an element of the form &I never occurs in the decreasing 
sequence {M,}, is exhaustive whenever the conditions on x0 and pi of Lemma 2.3 
are satisfied throughout the successive covering process. 

Proof. We show that under the conditions of Lemma 2.3, for the simplices M, 
Mi(i E (0, . . , n}) in Theorem 2.1 we have 

6(M, 1-c 
1 - E. 

1 - F. + E; a(M) > (6) 

which implies exhaustiveness since (1 - Ed) /( 1 - .zo + E:) < 1. Let (Y : = (1 - &o) / 
(1 - 8. + E:), and consider y” and Ajj as defined in Lemma 2.3. Fix an arbitrary i, 
and note that Mi has the vertices {u’, y”( j E (0, . . . , n}i # j)}. From y” - u’ = 
h,(u’ - u’), h,i < (Y for all j( j # i), we see, since 6(M) is the length of a longest 
edge of M, that for all j # i, 

11 yi’ - ui )I < a+(M). 

It remains to show that (( y” - yik I] < a6(M) (j # i, k # i, j # k). To see this, let 
rii = ui + LY(U’ - u’) and consider the triangle A = conv[ui, y”, y’“] C M for arbi- 
trary j, k E (0, . . . , n}, j # k, k # i, j # i. Let s(A) denote the length of the 
longest edge of A. Since h, < (Y, we have [yi’, yik] C A, and 

11 y” - yzk 1) < 8(A) . (7) 

When C?(A) = )( ui - 9” 11 or 6(A) = I] ui - yik I] it follows from the construction 
that 8(A) = &(M), and hence the desired assertion follows from (7). When 
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8(A) = (1 9" - yzk 1) we see from elementary geometry that 

and hence 

11 yi’ - JP (1 < 1) y” - yik I( = a(( uj - uk 11 < cd(M) 0 

3. The Algorithm 

We recall some known definitions and additional results which will aid in the 
presentation and understanding of the algorithm. Numerical experiments clearly 
indicate that it is worthwhile to invest in finding a tight initial simplex M, > D 
whose facets support D. One way to find such a simplex is to solve the following 
IZ + 1 convex minimization problems (with linear objective function): 

aj:=min{xj: xE D} (j= 1,. . . , n) 

and 

a .=max 
i 

2 xj:xEDj 
j=l 

to obtain 

M,= xER”:CXj-xj~O(j=l,...,n). 1 2 (X,-a)cO}. 
j=l 

Thefacets{xEiW”:xj=~j}(j=1,...,~),{~E[Wn:C~~l~j=~}ofMsupport 
D, and the vertices u”, . . . , un of MO have the form 

uO=(al,...,a!JT, 72 

= (a,,. . . ,aj-I,q,(yI+l,. . . ,a,) (j=l,. . . ,n) 

where Gj = (Y - Ci,,ai. 
In addition to the successive cover discussed in Section 3 we will also use the 

classical bisection of simplices. 

DEFINITION 3.1. Let A4 = conv{ u”, . . . , u”} be the vertex representation of an 
n-simplex M, and let w = 4 (ur + u”) be the midpoint of a longest edge [u”, us] of 
M. The partition {M, , M2} of M into two simplices M, = conv{u’, . . . , urpl, w, 

r+1 
U > . . . , u”} and M, = conv{u’, . . . , us-l, w, u’+l, . . . , u”} is called bisection of 
M. 

Bisection of simplices was introduced in Horst (1976) and since then used in many 
simplicial branch and bound algorithms (cf., e.g., Horst and Tuy, 1990 and 
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references therein). Different proofs of the following lemma are given in Thoai 
and Tuy (1980) and in Tuy, Khatchaturov, and Utkin (1987). Comprehensive 
discussions of bisection and more general simplicial partitions are given in Horst 
and Tuy (1990). 

LEMMA 3.1. Successive bisection of simplices is exhaustive, i.e., any infinite 
decreasing (nested) sequence {M,} of simplices generated by successive bisection 
converges to a singleton: 

Next, we recall the definition of a convex envelope. 

DEFINITION 3.2. The convex envelope of a function taken over a nonempty 
subset of S its domain is that function ‘p, such that 

(i) ‘p, is convex defined over the convex hull of S; 
(ii) if h is a convex function defined over the convex hull of S that satisfies 

h(x) <f(x) for all x E S, then h(x) G p,(x) for any x in the convex hull of S. 

A survey of various interesting properties of convex envelopes is given in Horst 
and Tuy (1990). 

The convex envelope (Pi of f taken over a simplex M, is the unique affine 
function that coincides with f at the vertices of M (cf. Section 1). Moreover, it 
follows immediately from Definition 3.2 that S, C S, implies qs, a ‘ps, on S, 
(monotonicity of qs, cf. Horst and Tuy, 1990; Benson and Horst, 1991. In each 
iteration of the algorithm, we will have a simplicial cover .& of a collection of 
simplices which are still candidates to contain an optimal solution of (P). We will 
also have an outer polytope-approximation P > D of the feasible set D. For each 
simplex M E A, a lower bound p(M) for f( x over M fl D will be determined by ) 
solving the linear programming problem 

P(M):=min{cp,(x):xEMnP}. (8) 

Another useful concept in concave minimization is the so-called y-extension which 
was introduced in Tuy (1964), and since then successfully used only in various 
conical branch and bound algorithms (e.g. Thoai and Tuy, 1980; Horst and Thoai, 
1989; Horst and Tuy, 1990; Horst, Thoai, and Benson, 1991). 

The following definition generalizes the classical y-extension so that it can be 
used in the simplicial cover technique to eliminate simplices of type M in the 
cover defined in Theorem 2.1. 

DEFINITION 3.3. Let f: R”+ R be concave; u, x E R”, x # u, y E R satisfying 
y <f(x), and 13~ > 1 be an arbitrary large number. Define 0, = max{ Al. 3 1: f(u + 
~(x - u))> r}, and set 
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O= 
$ if B0 exists 
f3, otherwise 

Then the point s = u + f3(x - U) is called y-extension of x with respect to U. 

The geometric meaning of the notion of a y-extension is as follows. Assume first 
that the level set L, := {y : f(y) 3 y} is bounded. Then f3, exists, and the 
y-extension of x with respect to u is the farthest intersection point with respect to 
u of the ray p(x, u) from u through x with the boundary {y : f(y) = y} of L,. 
Note that x E L,, but not necessarily u E L, so that p(x, V) might intersect 
{y : f(y) = y } twice. The number O1 replaces $ in the case of unbounded L, 
when 0, does not exist. Since L, is convex computing 0, amounts to solving a 
univariate convex minimization problem (line-search) which can be done in 
various ways (cf. Horst and Thoai, 1989; Horst, Thoai, and Benson, 1991). 

In the algorithm below, the number y will always be the objective function 
value at the best feasible point obtained so far (best feasible upper bound of m). 
Next, we show that, in the cover introduced in Section 2, the “inner” simplex J? 
can always be deleted when y-extensions are used. 

LEMMA 3.2. Let M = conv{ u”, . . . , v”} be the vertex representation of an n- 
simplex in R”, and let x0 E int M satisfy f(x”) > y 2 m. Consider the simplex 
&i = conv{sO, . . . , sn}, where si is the y-extension of x0 with respect to ui (i = 
0,. . . , n). Then 

f(x) ?= m Vx E M . 

Proof. From the definition of a y-extension we see that f(s’) 2 m (i = 
0 > . . . , n). The assertion follows, since the minimum value off over k! is attained 
at a vertex of M. q 

The following algorithm, one of several versions of which is given below in some 
detail, constructs two sequences {x”} and {rk) of points and two associated 
sequences { yk} and {p,} of real numbers where 

(i) xk E D (the incumbent best feasible solution), and yk = f(x”); 
(ii) Pk d min{ f(x): x E D}, and rk satisfying qM(rk) = Pk for some simplex M 

of the current simplicial cover. 

Iteration 0. 
0.1. Choose O< so < l/(1 + n), .sl k 0. Find a point p such that g(p) < 0. Find 

an n-simplex M, = conv{u’, . . . , un}, D C MO, whose facets support D. 
0.2. Determine 

zi=p+hj(p-u’), whereh,=max{0: g(p+B(p-u’))cO} 

(i=O,...,n}: 
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L?+‘+~ =p - A,+,+,(p - vi), where hn+l+i =rnax{8: g(p - O(p -d)) 

SO} (i=O,...,n}, 

and set 

y,=min{f(p),f(z’):i=O,...,2(n+l)}, yOED:f(yO)=y,. 

0.3. For i = 0, . . . ,2(n + l), find 

gEdg(z’), Hi:= g’(x-zr)~o}. 

Set 

zJ:=Mon(2($i!i). 

0.4. For i=O,. . . , ~1, determine the yo-extensions si of zi with respect to p. 
0.5. Construct the simplicial cover ~9% = { Mi : i E Z,, IO C { 1, , . . , IZ + 2)) of MO 

defined in Theorem 2.1 with respect to si (i = 0, . . , n) (where x0 = p). If 
1 Z, 1 = 1, then stop: y” is an optimal solution of (P) (cf. Lemma 3.2) 

0.6. For each M E A find the convex envelope qoPH off over M, and solve the 
linear program 

min{ qoM(x) : x E M fl P) 

obtaining the optimal value /3(M) = (PIM(Y(M))’ with an optimal solution r(M) 
when P(M) < 00. Set PO = min{ P(M) : M E Al}. Choose $ satisfying PO = /3(k), 
and set Y’ = r(G). 

Iteration k(k z 1). 
k.1. Set 9. := {ME At : P(M) < ykpl - cl} . 
k.2. If 2 = 0, then stop: ,y k-1 is an q-optimal solution, and ykpl - Pkel < cl. 
k.3. (Refining M). Let M = conv{w’, . . . , w”}. If rk-’ E D, then set yk-r = 

min{yk-l, f(rk-‘)). 

k.3.1. If rk-rflD and f(/-’ ) < yk-r, then bisect fi into two simplices k, 
and kz. Go to k.4. 

k.3.2. If in the representation 

r k-l=2 hid, i: h,=l, 
j=O j=o 

there is a j E (0, . . . , n} such that hj < co, then bisect k into two simplices A?, , 
ii2. Go to k.4. 

k.3.3. Find the y,-,-extensions s’,~-’ of rk-r with respect to wi, say 

s i,k-1 = wi + pi(rk - w’) (i = 0,. . . , 12). 

If pi > 1 + ~~ for all i E (0, . . . , n}, then construct the simplicial cover of G 
defined in Theorem 2.1 with respect to ?,k-l (i = 0, . . . , n). Otherwise, bisect 
iii into two simplices rii, , &. 
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k.4. (Improvement of the polytope approximation P). If rk-‘gD, determine 

2 -k =p + h,(rk-’ -p) 

where 

A, = max{ 0 : g( p + 8(/-l - p)) s 0} . 
Find 

p E ag(Zk) 

and set 

P=Pn{xEW: (&‘(x-z”“)sO}. 

k.5. (new lower bounds). Let ~6 denote the cover of ii? obtained in Step k.3. 
For each M E 2 find the convex envelope qua off over M, and solve the linear 
program 

min{rp,(x): xEMnP} 

obtaining the optimal value /3(M) = qM(r(M)) with an optimal solution r(M) 
when /3(M) <a. 

k.6. Set 2 = Z\(M) U i, yk := min{y,-,, f(z): z E Sk}, yk: f(y”) = yk, 
where Sk C D is the finite set of feasible points obtained while carrying out the 
preceding steps in iteration k. 

Set pk:= min{ P(M): A4 E %J}. Choose fi satisfying pk = /3(k) and set rk = 
r(M). Go to iteration k + 1. 

REMARKS. (1) Steps 0.1, 0.2 and 0.3 take into account the numerical ex- 
perience that it is worthwhile to invest some computational effort in a good initial 
outer approximation P and good initial upper and lower bound ‘y,, and &,, 
respectively. 

(2) If in step k.3 we have rk-l E 83, then it is often advantageous to replace in 
this step rk-’ by the barycenter of i@. 

(3) The set Sk in k.6. contains at least Fk and all new r(M) satisfying 
r(M) E D. 

(4) In k.5, additional cuts can be introduced similarly to steps 0.2 and 0.3 in 
order to improve the outer approximation P of D, where, however, an appropri- D 
ate balance with the numerical effort caused by the size of the linear programs in 
step k.5. For constraint-dropping strategies, see Horst and Tuy (1990) and 
references therein. 

The convergence of the algorithm can now be shown. 

THEOREM 3.1. If the above algorithm with E~ = 0 does not terminate after a 
finite number of iterations, then we have 

y := li+li yk = Ii-Ii f( y”) = min{ f(x).: x E D} = li,li Pk := p , 
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and every limit point of the sequence {y”} and also every limit point of the 
sequence {Y”} is an optimal solution of problem (P). 

Proof. As above, denote m = ruin{ f(x): x E O}. One way to prove Theorem 
3.1 is to demonstrate that the convergence conditions of the general branch and 
bound theory developed in Horst (1986), Horst and Tuy (1987), Tuy and Horst 
(1988) are fulfilled. Since outer approximation is involved we would also have to 
refer to general outer approximation theories, as, e.g., presented in Eaves and 
Zangwill (1971) and more recently by Horst, Thoai and Tuy (1987 and 1989) (for 
a comprehensive discussion of both theories, see Horst and Tuy, 1990). It is 
convenient, however, to give a brief direct proof here which only assumes the 
reader to be familiar with the convergence properties of the supporting hy- 
perplane-outer approximation method used in Step k.4. 

Note that the sequence {yk} of upper bounds is nonincreasing and bounded 
from below by m. Likewise, by the monotonicity property of convex envelopes 
stated above, the sequence {p,} of lower bounds is nondecreasing and bounded 
from above by m. It follows that both limits y and p exist, and 

-y>rnap. (9) 

In the first part of the proof we show that j3 = m, and every limit point Yof {r”} is 
an optimal solution of (P). The second part considers y and the sequence {y”}. 

Part 1. We first show in Part I.1 that f(F) d m. In part I.2 we prove that 7 E D, 
and hence f(7) 2 m. 

Part 1.1. Denote by {r”} a subsequence of {r”} satisfying rq~~~T. Then we 
conclude, using a standard argument on the finiteness of the number of partition 
elements in each iteration (see e.g., Horst, 1976, 1986, Horst and Tuy, 1987 and 
1990), that there exists an infinite d_ecreasing subsequence {&“} c {G4} such 
that either &‘q’+l . is generated from A4q’ by bisection or else fig’+’ is an element 
of the simplicial cover of fig’ as defined in Theorem 2.1 (cf. Step k.3). From 
Theorem 2.2 and Lemma 2.1 we know that there is a point r” satisfying - , 
Gq’--+ {?}. But, by definition of rq’ and kg’, respectively, we have rq’ E Mq It 
follo%hat rq’ + v”, and hence ? = r”: 

Next, we recall that the convex envelope pfi4, of f over fig’ is the affine 
function that coincides with f at the vertices of fiq’. Since both f and qa4’ attain 
their global minima over Gq’ at a vertex of A%“, we have 

min{ f(x) : x E Mq’} = min{ pk4,(x) : x E 2i;J”) 

d min{ qG4.(x) : x E Pq’ fl A2”) 

= Vti4.(rq’) = P,, . (10) 

Letting q’+ =J, we see, by continuity off, that min{ f(x) : x E fig’} x f(F), and 
(9), (10) yield 

f(i) G /3 S m . (11) 
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Part 1.2. By (11) we see that Part I of the proof is established if r E D. Let as 
above {r”} be a subsequence satisfying rq s ?. If {r”} contains a subsequence 
of points all of which lie in D, then by closedness of D we must have YE D. 
Therefore assume without loss of generality that rq C R”\D. But in this case, we 
know from the theory of the outer approximation methods of Step k.4 (support- 
ing hyperplane-method) that 

FE D, and also z”‘--+?, 
4-)” (12) 

where Zq is defined in Step k.4. For a proof, see, e.g., Benson and Horst (1991), 
Horst and Tuy (1990) and references there. 

Part II. Let 7 denote a limit point of { y”}, and let { y’} be a subsequence of 
{ y”} satisfying y’ --+ j. Consider the corresponding sequence {z”‘} C 8D. Since 
dD is compact the;e?xists a convergent subsequence {z”“} of {z”‘} that, by (12) 
satisfies Zq ---+ r. Since .? E Sq C D (cf. step k.6) we must have m d q-30 Y, = 
f( y”) <f(z”“). But in Part I we have seen that f(?“)s f(f) = m. It follows, by 
continuity of f and by (9), that y = f( 7) = m. 

4. Numerical Aspects and Illustrative Example 

In this section some brief comments are given on the computational subproce- 
dures called for by the algorithm. An illustrative example is presented, and first 
results of numerical experiments are reported. 

Each of the computational procedures called for by the algorithm has been 
implemented and discussed previously. For the computation of the initial simplex 
M, and of the convex envelopes we refer to Section 3 of this article and the 
references given there. The relevant information and the references for the 
remaining procedures are given in Table I. 

In the implementation of the lower bounding LP-procedure for solving 

min{cp,(x): XEMn P}, (13) 

problem (13) is transformed by the one-to-one linear mapping B which maps a 
simplex M = conv{ w’, . . . , w”} onto the standard simplex S : = {x E R” : xi > 0 
(j=l,..., n), Cy=r xj < l}. It is easy to see that B is represented by the IZ x n 
matrix B with columns (wi - w”) (i = 1, . . . , n). The numerical advantage of such 
a transformation is similar to that of corresponding transformation of cones 
discussed in Horst and Thoai (1989). 

To illustrate the new algorithm for solving (P), we apply it to the small example 
which was considered in Benson and Horst (1991). A comparison of the bounds 
-yk and Pk, respectively, of the new algorithm with the corresponding bounds YE” 
and /3:” of the Benson-Horst algorithm shows the anticipated improvement 
achieved by the new cover technique. Consider the problem 
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Table I. 

Subproblem 

y-extension 

Procedure 

line-search 

Reference 

Horst and Thoai (1989) 
Horst and Tuy (1990) 
Horst, Thoai, and Benson (1991) 

intersection of a ray 
or line-segment with 
the boundary CUD of D 

univariate convex Horst and Thoai (1989) 
minimization problem Horst and Tuy (1990) 

Benson and Horst (1991) 
Horst, Thoai, and Benson (1991) 

subgradient of g at z convex combination of Benson and Horst (1991) 
the gradients Vg,(z) 
satisfying g,(z) = g(z) 

lower bounds simplex and Benson and Horst (1991) 
min{ C&X) : n E M fl P} dual-simplex 

minimize f(x, , x2) = -129x; + 242x,x, - 129x; + 1258x, + 1242x 2 

s.t. --x,-X2-220 

-4x,+x;-860 

16x: - 32x, + 25x; - 384 s 0 . 

The exact optimal solution is given by x* = t--1,2) with m =f(x*) = -4871. We 
choose the interior point p = (0,O) and stop when we are guaranteed that yk is 
within 3% of m (cf. Benson and Horst, 1991). The initial simplex 

M, = conv((11.33; -3.93), (-2.00; 9.40), (-2.00; -3.93): 

= {x E R”, x 1 2 -2, x2 3 -3.93, x, + x2 s 7.43) ) 

and the initial polytope 

P = {x: 141.27~~ - 93.89x2 s 941.27; -4.00~~ + 1.31x2 6 8.43; 

-4.00~~ +4.87x2 c 13.93; --x1 - x2 ~2.00; 31.83~~ + 196.00x, 

6 831.83) 

yield the following first simplicial cover, corresponding convex envelopes and 
lower bounds: 

M,,, = conv((11.33; -3.93); (2.88; 4.52); (2.52; -3.93)) , 

pM,,,(x) = -1490.52 x1 - 573.82x2 + 4321.99, /3(M,,,) = -6234.95 

MO,, = conv{(.228; 5.13); (-2.00; 9.40); (-2.00; 0.94)) , 

p,,,,(x) = 3002.66~~ - 3060.06x2 + 4111.85, ~(M,,,) = -5423.44 
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MO,, = conv{(-0.35; -3.93); (-2.00; 0.29); (-2.00; -3.93)) , 

‘p,lo,,(x) = 609.77~~ - 1255.89~~ - 1957.42, &k&J = -3536.06, 

(cf. Fig. 1). 

At the end of the initial iteration 0 we have y” = (-0.52; 2.43), ‘y. = f( y”) = 
-4780.10, r” = (6.96; 0.44), and PO = P(M,,,) = -6234.95; whereas the Benson- 
Horst method obtained j3:” = -19032, 7:” = 0. 

In iteration 1, the simplex MO,, is deleted, and the simplex MO,, is bisected to 
yield 

and 

M,,, = conv((7.11; 0.29); (2.88; 4.52); (2.52; -3.93)}, 

(pMl,,((X) =545.54x, - 660.20~~ - 1129.23, 

M,>, = conv((11.33; -3.93); (7.11; 0.29); (2.52, -3.93)) , 

q~~,,Jx) = 1480.52~~ + 1538.62~~ + 12624.23 . 

Since Y’$ D, we set P := P II {x : 159.27~~ + 19.09~~ c 959.27)) and obtain 
/3(M,,,) = -2069.61, /3(M1,J = 579.92. 

Fig. 1. Initial simplex cover. 
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At the end of iteration 1, we have y1 = y”, y1 = y0 = -4780.10, YI = (-1.60; 
1.55) and p1 = p(M,,,) = -5423.44, whereas then Benson-Horst approach yields 

BH 
Pl = -16120, 7;” = -3032. 

In iteration 2, the simplices M,,, and M,,, are deleted, the simplex Mo,z is 
bisected to yield 

and 

M2,* = conv((2.28; 5.13); (-2.00; 5.17); (-2.00; 0.94)) , 

cpMl,Jx) = 2468.29~~ - 2514.11~~ + 2530.67 

M2,2 = conv((2.28; 5.13); (-2.00; 9.40); (-2.00; 5.17)) , 

qM2,Jx) = 2456.72~~ - 3605.99~~ + 8153.34. 

Since r’$ D, we set now P := P fl {x: -400x, + 2.87~~ < lO.OO}, and obtain 
p(M,,,) = -5114.58 and P(M2,J = -4864.56. At the end of iteration 2 we have 
the point y* = (-1.10; 1.89) and the bounds & = -5423.44, y2 =f(y’) = 
-4865.56. The bounds after iteration 2 of the Benson-Hoist approach were 

BH 
P2 = -8532, y;” = -4871. 

The algorithm continues with bisections for only two more full iterations to 
obtain the required 3%-accuracy. At the end of iteration 4 we have p, = 
-4963.04, y4 = (-0.85; 2.16), y4 = (0.97; 2.02), and y4 =f(y”) = -4870.80, 
whereas the Horst-Benson method stopped after 7 iterations with the bounds 

BH 
Y-7 = -4871 and pf” = -5016. 

After step 5.1 only the simplex M = conv((0.14; 3.03), (-2.00,3.05), 
(-2.00; 0.94)) remains in the list of undeleted simplices. All of the other 
previously generated simplices were deleted (fathomed) in some step k. 1 (k E 
(1, . . . > 5)). 

A similar superiority over the pure Benson-Horst approach was observed at 25 
additional examples taken from the test examples described in Horst, Thoai, and 
Benson (1991): it is clearly worthwhile to invest the computational effort required 
in iteration 0 to obtain good initial bounds. We also observed in many examples 
that, after the initial iteration 0 only bisections were carried out in steps k.3 
(k = 1,2, . . .). Moreover, when successive simpiicial covering was performed in 
exceptional cases, then the new algorithm was not guaranteed to be more efficient 
than the variant which, after one or two iterations, switched to a pure bisection. 
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Note 

‘We adopt the usual convention that /3(M) = m when MI- P = 0. In this case, the simplex M is of 
course deleted from further consideration (cf. Step k.1.) 



NEW SIMPLICIAL COVER TECHNIQUE 19 

References 

Al-Khayyal, F. A. and Falk, J. E. (1983), Jointly Constrained Biconvex Programming, Mathematics of 
Operations Research 8, 273-286. 

Benson, H. P. (1990), Separable Concave Minimization via Partial Outer Approximation and Branch 
and Bound, Operations Research Letters 9, 389-394. 

Benson, H. P. and Erenguc, S. (1988), Using Convex Envelopes to Solve the Interactive Fixed Charge 
Linear Programming Problem, Journal of Optimization Theory and Applications 59, 223-246. 

Benson, H. P. and Horst, R. (1991), A Branch and Bound-Outer Approximation Algorithm for 
Concave Minimization over a Convex Set, .I. Computers and Mathematics with Applications 21, 
67-76. 

Chen, P. C., Hansen, P., and Jaumard, B. (1991). On-Line and Off-Line Vertex Enumeration by 
Adjacency Lists, to appear in Operations Research Letters. 

Eaves, B. C. and Zangwill, W. I. (1971), Generalized Cutting Plane Algorithms, SIAM Journal on 
Control 9, 529-542. 

Falk, J. E. and Soland, R. M. (1969), An Algorithm for Separable Nonconvex Programming 
Problems, Management Science 15, 550-569. 

Hoffman, K. L. (1981), A Method for Globally Minimizing Concave Functions over Convex Sets, 
Mathematical Programming 20, 22-32. 

Hors& R. (1976), An Algorithm for Nonconvex Programming Problems, Mathematical Programming 
10, 312-321. 

Horst, R. (1980), A Note on the Convergence of an Algorithm for Noncovex Programming Problems, 
Mathematical Programming 19, 237-238. 

Horst, R. (1986), A General Class of Branch and Bound Methods in Global Optimization with Some 
New Approaches for Concave Minimization, Journal of Optimization Theory and Applications 51, 
271-291. 

Horst, R. and Thoai, N. V., (1989), Modification, Implementation and Comparison of Three 
Algorithms for Globally Solving Linearly Constrained Concave Minimization Problems, Computing 
42, 271-289. 

Horst, R., Thoai, N. V., and Benson, H. P. (1991), Concave Minimization via Conical Partitions and 
Polyhedral Outer Approximation, to appear in Mathemntical Programming. 

Horst, R., Thoai, N. V., and de Vries, J. (1988), On Finding New Vertices and Redundant Constraints 
in Cutting Plane Algorithms for Global Optimization, Operations Research Letters 7, 85-90. 

Horst, R., Thoai, N. V., and de Vries, J. (1991), On Geometry and Convergence of Simplicial Covers, 
submitted for publication. 

Horst, R., Thoai, N. V., and Tuy, H. (1987), Outer Approximation by Polyhedral Convex Sets. 
Operations Research Spektrum 9, 153-159. 

Horst, R., Thoai, N. V., and Tuy, H. (1989), On an Outer Approximation Concept in Global 
Optimization, Optimization 20, 255-264. 

Horst, R. and Tuy, H. (1987), On the Convergence of Global Methods in Multiextremal Optimiza- 
tion, Journal of Optimization Theory and Applications 54, 253-271. 

Horst, R. and Tuy, H. (1990), Global Optimization (Deterministic Approaches), Springer, Berlin. 
Pardalos, P. M. and Rosen, J. B. (1987), Constrained Global Optimization: Algorithms and 

Applications, Lecture Notes in Computer Science 268, Springer-Verlag, Berlin. 
Thieu, T. V., Tam, B. T., and Ban, T. V. (1983), An Outer Approximation Method for Globally 

Minimizing a Concave Function over a Compact Convex Set, Acta Mathematics Vietnamica 8, 
21-40. 

Thoai, N. V. and de Vries. J. (1988), Numerical Experiments on Concave Minimization Problems, 
Proceedings XIII. Symposium on Operations Research, Methods of Operations Research 60, 
363-365. 

Tuy, H. (1991), Effect of the Subdivision Strategy on Convergence and Efficiency of Some Global 
Optimization Algorithms, 1. of Global Optimization 1, 23-36. 

Tuy, H. and Horst, R. (1988), Convergence and Restart in Branch and Bound Algorithms for Global 
Optimization, Application to Concave Minimization and DC-Optimization Problems, Mathematical 
Programming 41, 161-183. 

Tuy, H., Thieu, T. V., and Thai, N. Q. (1985), A Conical Algorithm for Globally Minimizing a 
Concave Function Over a Closed Convex Set, Mathematics of Operations Research 10, 498-515. 

Veinott, A. F. (1967), Minimum Concave Cost Solution of Leontiev Substitution Models of Multi- 
Facility Inventory Systems, Operations Research 14, 486-507. 


